

A Virtual Conference presented by AIM & RAIN 9 - 10 December 2020

Metallograph[®] Printed Electronics

Distributed RFID Production and other applications using Conductive Thermal Transfer Printing

Presenter: Dan Harrison, PhD CTO, IIMAK

A Virtual Conference presented by AIM & RAIN 9 - 10 December 2020

- Digital Transformation of Auto-Identification
- What is Metallograph[®]
- Printer Technology
- Distributed RFID Production
 - Direct to label or package
- Interesting Applications for Metallograph[®]

Auto Identification Evolution

Digital processes have enabled analog Auto ID technologies to migrate Into distributed applications – marking or coding at the point of production

Analog Origins Present Embodiments CAG 22528 **Digital Printing** SER 0000000000 1974 1st Commercial UPC **Barcode – Analog Printed Digitally Printed UID Integrated Circuit** 1940's RFID in WWII **DOD IUID RFID Inlay**

Digital Enables Variable Information Printing

- Analog barcode printing still widely used for UPC and other applications
 - Analog printed on packing materials

Thermal printhead is a linear array of resistors 150 to 600 per inch Development of the thermal printhead enabled distributed barcode printing

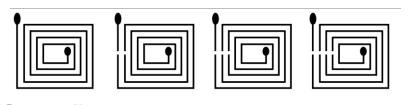
- Digital barcodes thermally printed on the manufacturing, packing or shipping line
 - Variable information such as lot codes, date codes, ingredients, addresses, etc.

frostedflakes.com

Cm-

Metallograph[®] Digital Conductive Printing

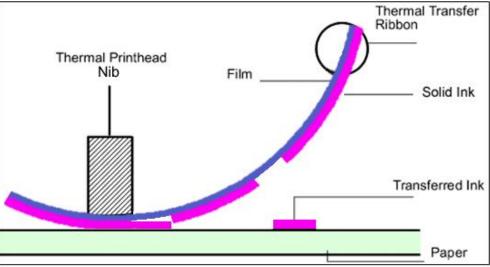
Provides a means of innovation


Digital Conductive Printing Opens New Doors

Parallel thermal printheads provide extremely reproducible dimensions

Not Only Barcodes

But Also Chip-less RFID – 300, 600 and 1200 dpi!


250 µm Lines and Spaces can be robustly printed

Digital: Thermal Transfer Technology

- Raster-based (pixel not vector)
- Ribbon construction
 - Backcoat, Carrier, Top Coat(s)
- Receiver
 - Paper, film, fabric, etc.
- Thermal Printhead
 - Linear array of individually addressable heating elements
- Mechanism
 - Topcoat softens / melts
 - Sticks to receiver
 - Metal layer releases from PET Substrate

Metallograph[®] Ribbon Structure

- 1. Back coat
 - Processing aid
- 2. Carrier Film
 - Dimensional stability
- 3. Top coats (ink equivalent)
 - Release layer
 - Conductive metal layer by vacuum deposition or
 - Dielectric layer
 - Thermoplastic tie layer (Optional)
 - Adhesive for thermal and hot stamp
 - Not needed for hot foiling with printed adhesive

PET Carrier Film

Release Layer (not-conductive)

Vacuum Metalized (Continuous) Layer

Thermoplastic Tie layer

Thermally Printed Al Properties

- Power Capacity...... 2.50W
- Maximum Current Density...... 410 A/mm2
- Bend Test (ASTM F2750-09) \

Percent increase in resistivity

- after 100 Bends Compression...... 0.65%
- after 100 Bends Extension...... 0.50%
- Cross Hatch Adhesion Test

(ASTM F1842-09)..... 5

- Environmental Aging Test (ASTM F1996-06) 38^oC, 95%RH, 10 Days...... Pass
- Drying Time..... Immediate
- Sintering.....
 Not Required
- Thickness...... Al: 0.26 μm, Cu: 0.35 μm

Bench Top Industrial Label Printers

- Research,
- Development,
- Prototype,
- **Production**

No Scale Up Needed!!! (In-line for large volume)

Benchtop Printers

Industrial quality thermal transfer roll-to-roll printers

- Zebra, Avery Dennison, DataMatrix, QuickLabel, CAB, Honeywell, Sato, Logopak, Toshiba Tec and others
- 200, 300 and 600 dpi
- 4, 5, 6 and 8 inch wide
- 1 to 14 ips 300 dpi proven for RFID antenna at 5 ips (18,000 inch/hr)
- Internal rewinder (8 inch max) normal configuration
 - Can use 18 inch external supply and take up or install engine in-line
- 300 dpi least difficult to use.
- Pricing: 300 dpi devices: 4" ~ \$2500 to \$3000; 8" ~ \$7000

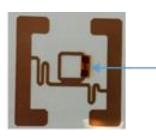
Multilayer Single Pass

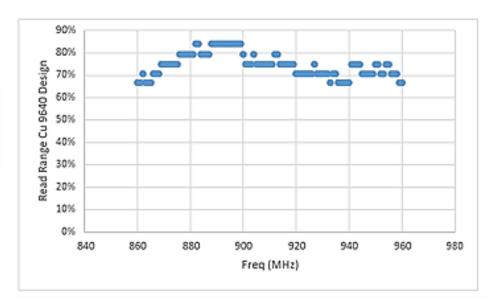
QuickLabel QLS 4100

To 140 mm - QuickLabel is a Metallograph Tech partner & distributor mprint LP 2000 to 240 mm

Precision Industrial Printer

Full Color Graphic Arts – Gerber Edge


- 300 mm wide,
- 300 to 1200 dpi,
- Precision 10 μm
- Up to 10 layers
- \$18,000
- Matching cutter



Metallograph[®] Performs well in RFID Applications

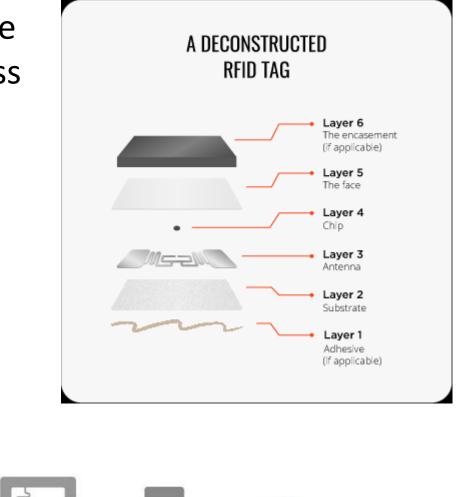
- Performance Comparison of Al & Cu Metallograph[®] with Etched Antenna*
 - Alien Technology[®] 9640 antenna ~70% of read distance
 - Alien Technology[®] 9634 antenna ~80% of read distance

Chip mounted on a polyimide strap with etched Cu pads for attachment to the antenna

* Test comparison Conducted at Vizinex

Metallograph[®] Advantages

Inkjet vs Thermal Transfer


- Research at U. Glasgow and Tampere University of Technology
 - Compared Digital Antenna printing
 - Conductive IJ and Thermal Transfer achieved equivalent read distance.
 - Silver based IJ requires drying and sintering, inks and printers are much more expensive
 - Metallograph[®] is ready to use after printing, does not require ink receptive substrates, even works on paper

Centralized RFID Tag Production

 RFID Inlays have enabled the rapid deployment of wireless auto-identification of parts, products, supplies, equipment, etc.

ALIEN 9627

Centralized RFID Tag Production

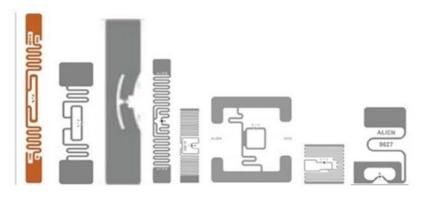
Pros

- Large selection of chips, antenna's and form factors
- Regional Producers add value by combining existing components to create customized solutions
- Programable at the point of inlay attachment

Cons

- Many items required customized antenna design
 - MOQ for customized antenna is very high
- Inlay cost is too high for many inexpensive product categories
- Inlays to not enable direct to packaging material printing

Distributed RFID Production


Enabled by Metallograph

Pros

- Antenna design optimized for item
- Direct to packaging materials
 - Paper or film
- Low MOQ/low cost
- Value added resellers
 - Capital sale
 - Design services
 - Consumable annuity

Cons

- Requires small capital investment by end user
- End user responsible for process
- High volume inlays may be less expensive

Distributed RFID Production

Enabled by Metallograph®

- Factors to consider
 - Optimize the antenna design to the article
 - Size, shape, contents and case packing density
 - Antenna chip impedance matching
 - Printing on packaging materials
 - Paper and film
 - Mounting of the chip
 - Strap attachment
 - Modest volume pick & place machines in development
 - Attaching the chip
 - Conductive or non-conductive adhesives

RAIN Tags on paper and board

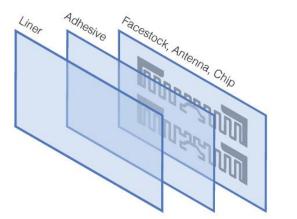
- Pulp & Paper Research Institute (VUPC) Slovakia program to increase paper utilization and recycling, and bring low environmental footprint manufacturing to Slovakia.
- RFID Example:
 - Plastic downgrades paper meant for recycle. Growing demand for tags without plastic for packaging and retail.
 - VUPC active program demonstrating printing of RAIN RFID by thermal transfer with Metallograph[®].
 - Careful about fundamentals
 - Preferred paper properties
 - Actually measure antenna impedance to select matching IC
 - Determined that read range of aluminum antenna tags by Metallograph[®] or etched are the same with the preferred chip. (Gigac et al)
 - Next program stage is to develop process for high volume production by hot stamping Metallograph[®] on paper and paperboard.

Ref: Juraj Ġigac, Mária Fišerová, Maroš Kováč, and Svetozár Hegyi; Passive UHF RFID Tags with Thermal Transfer Printed Antennas; MATERIALI IN TEHNOLOGIJE *(accepted for publication)* www.vupc.sk

Environmental Impact– Inlay vs Metallograph

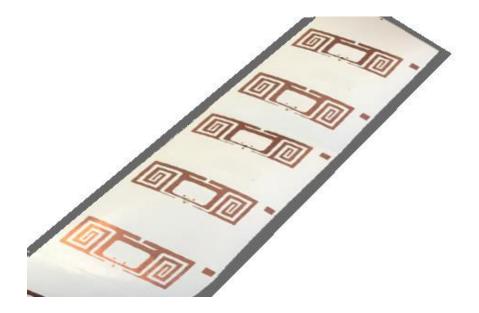
Antenna Area = 1 in² – 3.23 cm² RFID Antenna Inlay

- Inlay (50 μm PET)
 - 22.0 mg
- Aluminum (12 μm)
 - 10.5 mg
- Adhesive (12 μm)
 - 3.9 mg
- Hazardous Waste
 - Yes



Metallograph[®] Antenna*

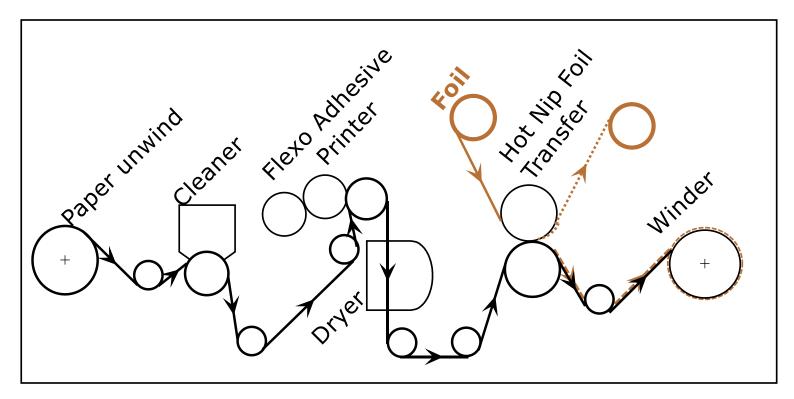
- * Printed onto Packaging Substrate
 - Ribbon (6 μm PET)
 - 2.7 mg
 - Aluminum (0.024 μm)
 - 0.02 mg
 - Adhesive (1 μm)
 - 0.3mg
 - Hazardous Waste
 - No


Metallograph uses 10x less material than an equivalent Inlay and no hazardous waste

High Volume Analog RFID Production

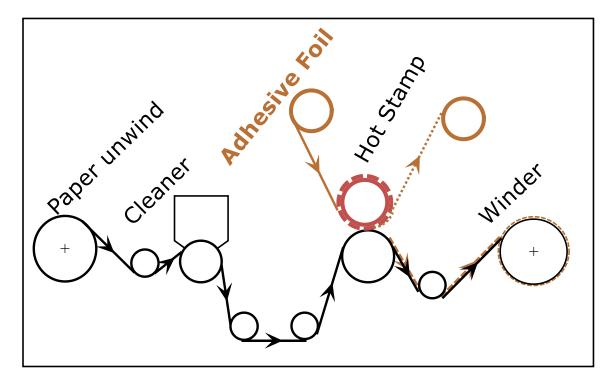
р

CustomWave Inlay-less Smart Label Construction



Analog: Hot Foiling with Printed Adhesive

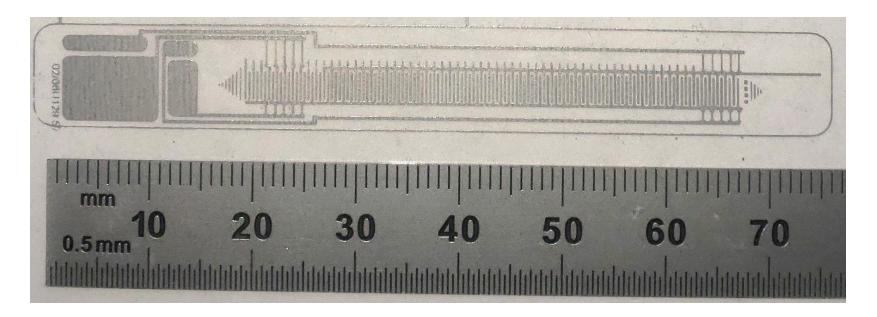
Print thin thermo-plastic adhesive. Cure and dry. Nip to glue-less Metallograph® ribbon. Separate. Wind. 100 fpm design permitting



Analog: Rotary Hot Stamp

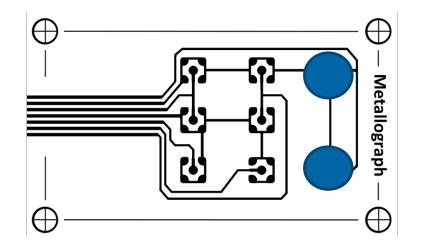
Thermal transfer style ribbon – coated with thermo-plastic adhesive.

Rotary hot stamp - 60 fpm design permitting



Other Applications for Metallograph®

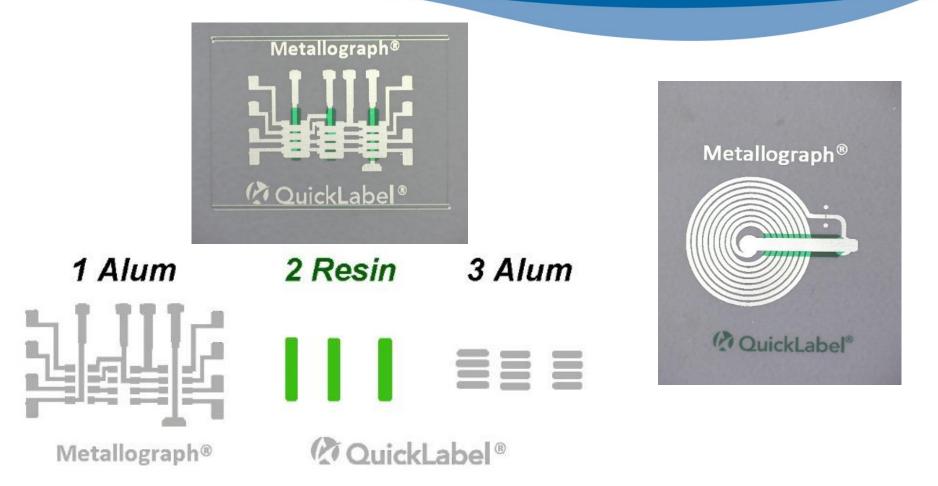
- "Lab on a Chip" electrode array for counting white blood cells using an impedance cytometry method
 - 0.25 micron Al thermal transfer printed on a 300 dpi Zebra 140 Xilll
 - 250 micron lines and spaces in array



Touchscreens and Sensors

Gaps & conductors 0.010"

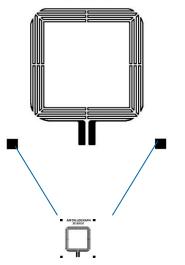
Key is resistance or capacitance overprint or pad



Use polymeric structures with pressure sensitive resistance

Multilayer Structures Printed QLS

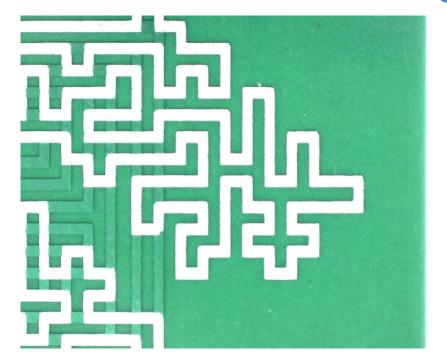
Three layers produced at 2 ips - no drying, no rewinding

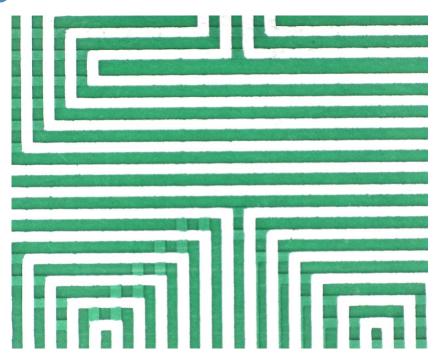


Short-run low voltage heaters

25 x 25 mm, 500 ohm, low voltage heater

METALLOGRAPH 20180518


600 x 200 mm, 5500 ohm flat panel high voltage heater


Zo+o−−oredt

Three Layer Composite 0.001" Registration

Flex circuits and connectors

Metallograph[®] Conductive Ribbon Cables

Distributed RFID Production Value Proposition

- Direct antenna printing onto product or package is enabled with Metallograph[®] Conductive Thermal Transfer
 - Direct to Packaging Materials
 - No inlay expense & waste
 - Customized antenna design with low MOQ
 - Low equipment cost and competitive supply costs
 - Digital or analog printing options

for Printed Electronics

- Developed and Manufactured by iimak, Amherst, NY
- Distributed Globally by SPF-Inc, New Hope, PA
 - Distributors:
 - FLEXcon Films for Electronics
 - Graphic Marking Systems No. 1 Gerber Dealer

www.iimak.com www.metallograph.tech www.spf.com/metallograph www.flexcon.com www.GraphicMS.com

Thank you for Attending

A Virtual Conference presented by AIM & RAIN 9 - 10 December 2020

Presentations will be available on-line soon. You will receive an email with a link when they are available.