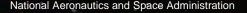


A Virtual Conference presented by AIM & RAIN 9 - 10 December 2020


Thank you to our sponsors

A Virtual Conference presented by AIM & RAIN 9 - 10 December 2020

Platinum

RFID Advances in the ISS REALM: RFID-Enabled Autonomous Logistics Management

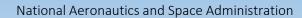
RAIN ENGAGE Conference Dec 2020

Patrick W. Fink, Ph.D. Jesse Berger National Aeronautics and Space Administration

Patrick W. Fink, Ph.D. Phong Ngo Andrew Chu **James Broyan Jesse Berger Robert C. Adams Caroline Ellis Joseph Bourque Greg Lin Donald Schmalholz** Prashant Shenoy, Ph.D. Aidan Abdullali Scott Hafermalz **Robert Stonestreet Steve Province**

Acknowledgements

Danny Rodriguez Raymond Wagner, Ph.D. Joel Simonoff **Melissa McKinley** Adam Merta Frank Graffagnino **James Lawley Travis Christian Benjamin Vizena Travis Christian Emmanuel Cecchet, Ph.D. Osher Lerner** Scott Kauffman William Dell ...and others

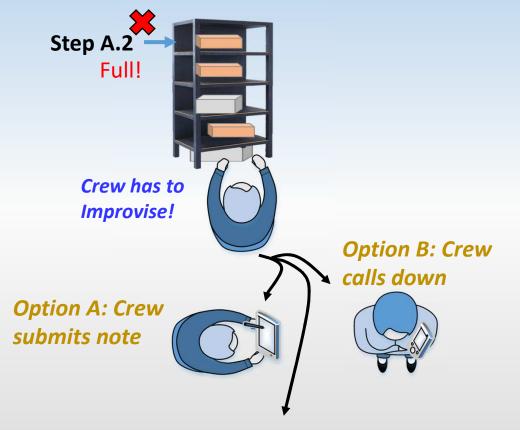

REALM Experiments

- RFID-Enabled Autonomous Logistics Management (REALM) experiments are jointly funded by NASA's Advanced Exploration Systems (AES) and ISS Programs
- Why: Autonomous Logistics Management (ALM) was identified in 2015 as a high priority technology need for long duration Human Exploration missions
 - Identify location of all items
 - Allows for more efficient packing, which becomes possible when efficient crew retrieval is assured
- Objectives:
 - Use ISS to learn how to implement Autonomous Logistics Management
 - Investigate different strategies/tools and assess for different missions
 - Fixed reader/antennas, RFID-equipped free-flyer, smart stowage structures
 - Determine combinations of RFID strategies and how they might vary according to mission needs
 - Apply knowledge to define a REALM system for Gateway

ISS Stowage Background

ISS Inventory and Stowage

- ISS has approx. 118 cu m (2250 CTBe) of usable stowage space
 - CTBe: Cargo Transfer Bag equivalent
- On board stowage is tracked and utilized via the Inventory Management System (IMS)
 - Database with Java interface
 - Tracks over 130,000 items
 - 64,000 items are active
 - ~3,000 items are considered lost



ISS Inventory and Stowage: Ground-Assisted

- Updating the IMS data is a largely manual process with assistance from a handheld barcode reader
 - ISS crew has the capability to update IMS
 - Requires additional time to input updates
 - IMS updates primarily performed by Flight Controllers
 - Data in IMS is only as accurate as the information provided by the crew.
 - Crew is responsible for communicating changes to stowage plans to the ground.

Wanted Posters

- Provide information regarding
 - Picture of lost item
 - Identifying data, e.g., part number, serial number, barcode, etc.
 - Last known location
 - Potential alternate locations
 - Stowage location if found
 - Rationale regarding use
- Average time allotted for a "Wanted Poster" is ~30 minutes

53-0456: Wanted Poster: Wet Trash Bag Warehouse Page 1 of 3

If found, STOW at NOD104_AFT and RECTING on where it was found to MCC-H	
Identification: Part Name: 0.5 CTB: WET TRASH B. WARE USE Part Number: SEG33122042-201 QTY: 2 Serial Number: 4283, 4285 Barcode: 00180286J 018 JJ	
Possible Securitions	Notes
NOD104_A	Expected location. Crew reported unloading CTBs here with no deltas. Last confirmed location.
PMA1	Could possibly have been placed with other Pantry/Warehouse items.
NOD1O4_F1 or adjacent lockers	Current location of wet trash bag pantry. NOD104 lockers also contain other pantry items and EVA hardware.

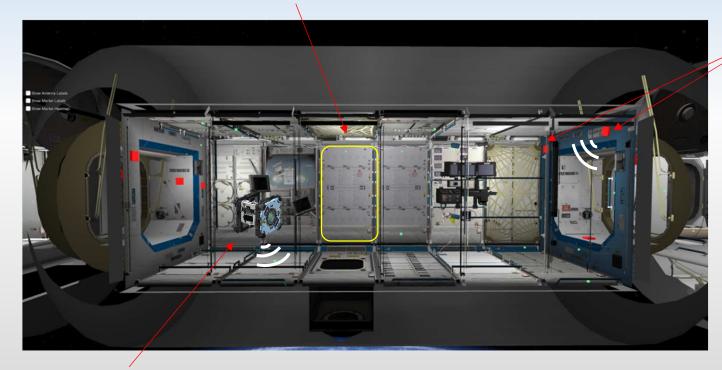
NOTE: RFID Payload ground teams identified these CTBs as being stowed toward the aft section of NOD1 or in PMA1 as recently as GMT 298/17.

Return-on-Investment Targets for RFID

- Localization: where is it?
 - Capability tracked for instrumented and non-instrumented modules
 - Non-instrumented adjacent modules are likely for future Exploration as well as ISS

• Transfer audits

- Confirm correct items are transferred
 - Avoids unintentional jettison of critical items
 - Assures essential provisions are transferred to departure missions; e.g., for lunar surface
- Inventory audits
 - Track critical consumables
 - Verify spares and contingency consumables remain at outpost in support of next mission



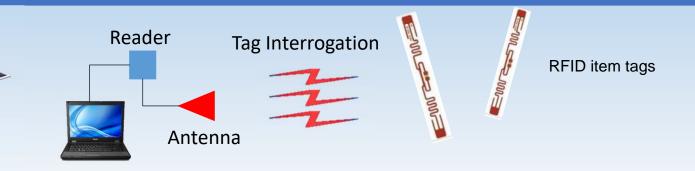
REALM RFID Technology Building Blocks

REALM-3

• Smart stowage system (reader integrated into drawers/racks) Key attribute: RF penetration into dense collections

REALM-1

• Fixed reader/antenna System


Key attribute: pervasive, 24/7 coverage

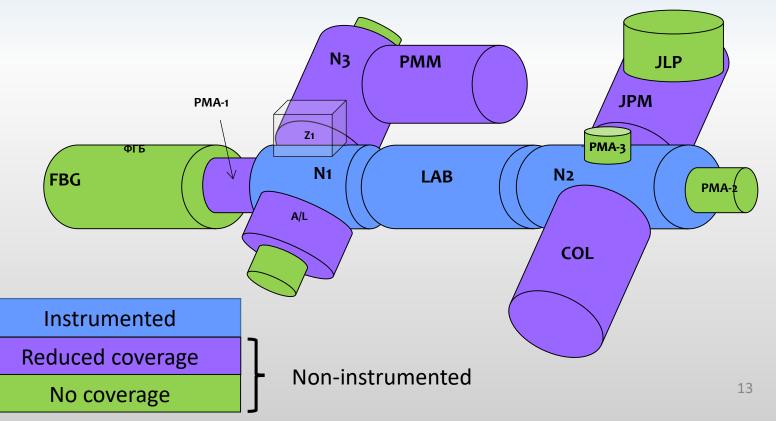
REALM-2

• Robotic free-flyer equipped with RFID reader Key attribute: mobile, coverage extension, homing

Insight: Fixed Reader System + CEP

All data downlinked to ground for archiving

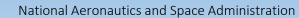
- Tags utilize RF power from interrogator no batteries
- Links to readers can be interrupted
- Tags typically fit profile of existing ISS labels


<u>Complex Event Processing</u> Machine learning algorithms analyze data for inferences such as location

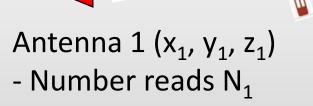
RFID Logistics (aka REALM)

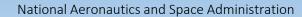
RFID-Enabled Autonomous Logistics Management

- RFID readers track cargo transfer within the USOS
- 8 antennas and 2 readers in each instrumented module
- Data downlinked to ground and manually compared to IMS, reporting any differences to stowage officers.
- Initial installation and setup occurred on 2/14/2017



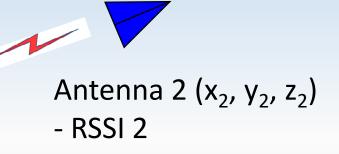
REALM-1 Localization Progress

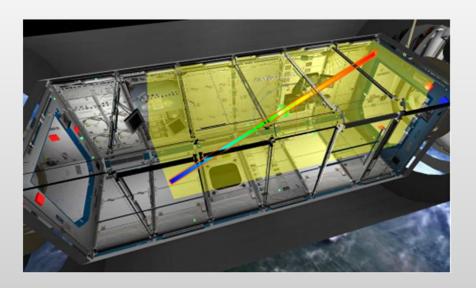



Location by Nearest Reader Antenna

 Target tag is assigned an estimated position = to the reader antenna that reads that tag the most over a fixed interval

Antenna 2 (x_2, y_2, z_2) - Number reads N₂

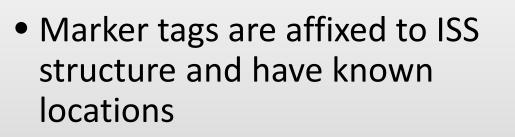


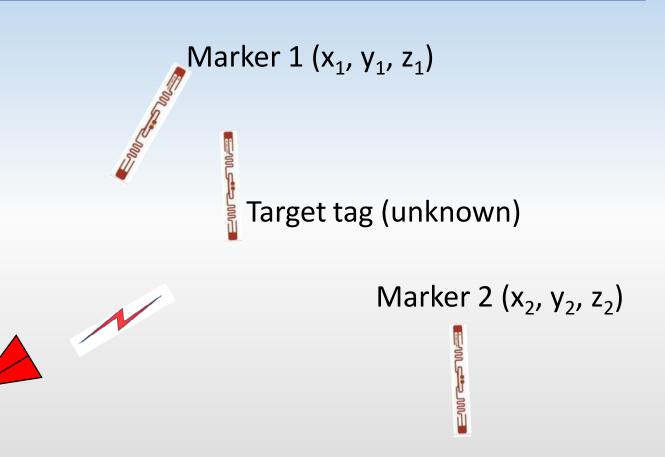


Signal-Strength Weighted Triangulation (RSSI-Weighted)

 Estimated location is interpolated through volume based on signal strength (RSSI) received by different antennas

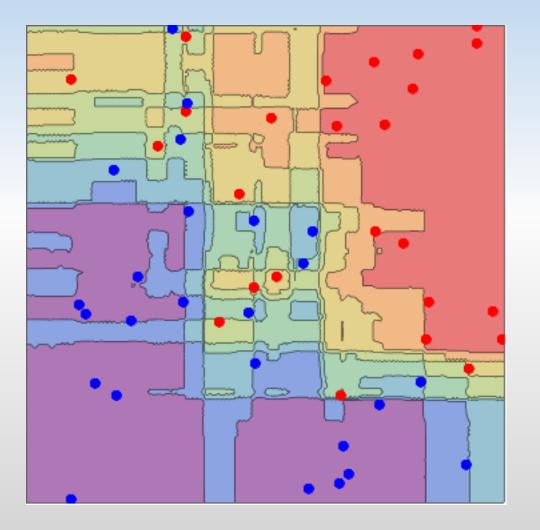
Antenna 1 (x_1 , y_1 , z_1) - RSSI 1





kNN (kth Nearest Neighbors)

 Mathematical interpolation between nearest marker tag positions with weighting by difference in signal response (RSSI) of target tag and nearest marker tags

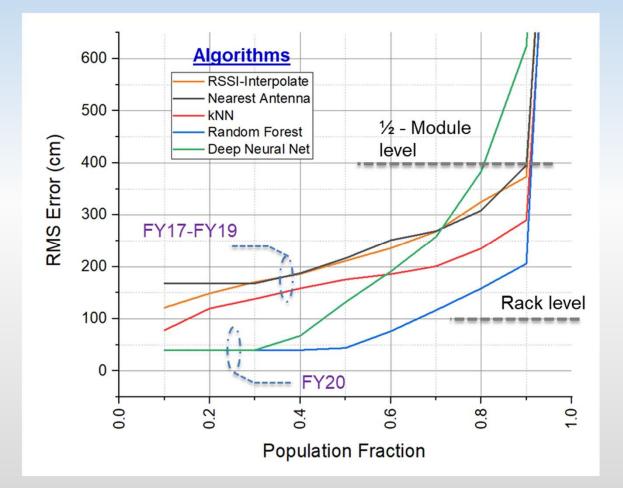


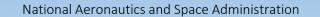
Machine Learning: Random Forest


- Machine Learning Classifier
- Aggregate an hour of reads into 800+ features
- Utilize IMS rack information as a source of truth to train a set of 200 Decision Trees
- Generates a set of Rack Probabilities

Machine Learning: Deep Neural Network

- Generates images to represent frequency response for all antennas
- Utilize State of the Art Image Classification Convolutional Neural Network
- Utilized semi-hard negative mining and a triple loss function to generates Similarity Embeddings
- Generates a set of Rack Probabilities

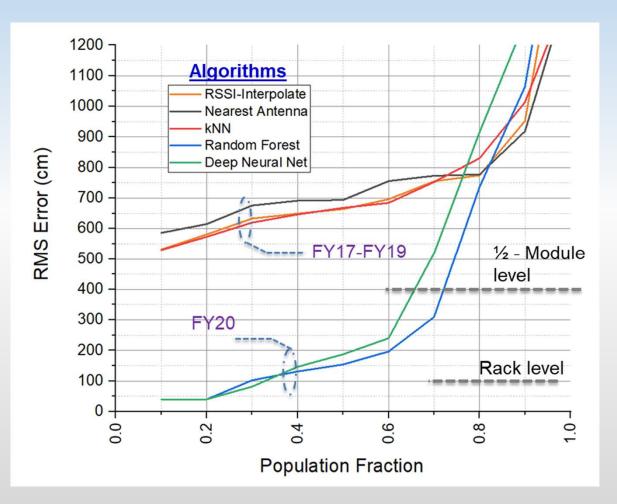




Localization Results: Instrumented Modules


- Error based on Euclidean distance from stowage cell
- Machine learning solutions estimate according to racks
 - Correct racks are assigned an error equal to 1/2 rack width (50 cm)
- Instrumented: NOD1, US LAB, NOD2

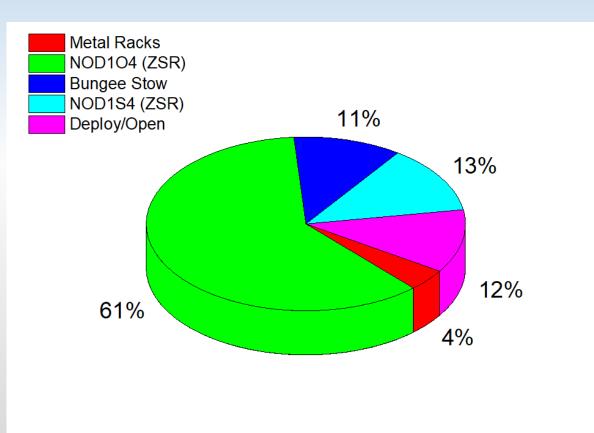
REALM Modules: Instrumented/Not-Instrumented



Localization Results: Non-Instrumented Modules

- Error based on Euclidean distance from stowage cell
- Non-Instrumented: NOD3, PMM, JPM, COL

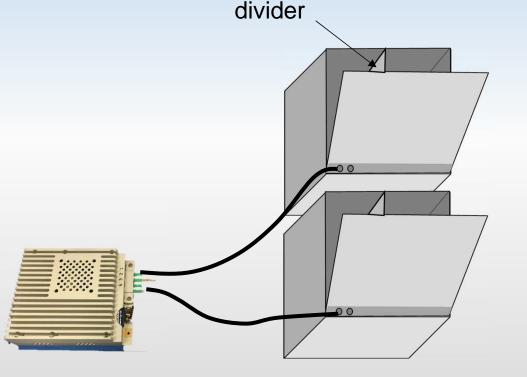
REALM Audit Capability



NOD1 Audit Results

- Inventory accuracy: 72%
- Tagged items in NOD1: 492
- ZSR: "Zero-gravity Stowage Rack"
 - soft stowage with metal foil wrapped food bags
- Bungee Stow CTBs held in place with bungee cords

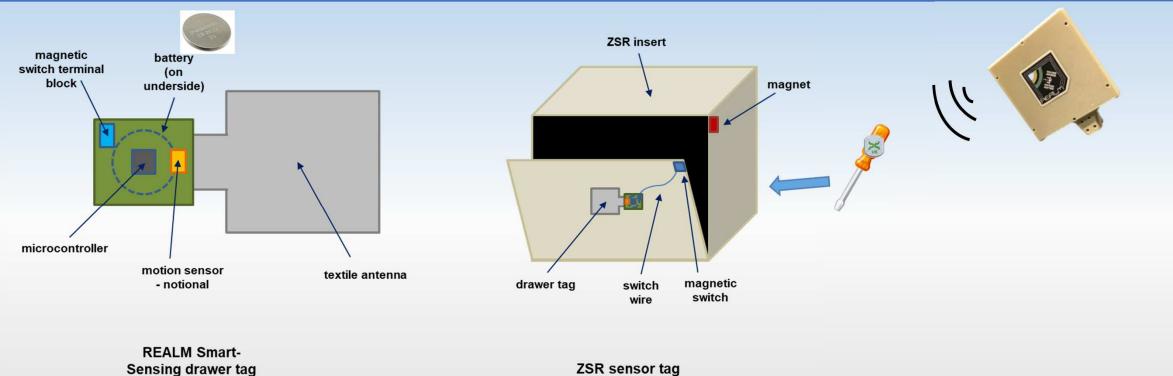
Missing Items by Stowage Location in Node 1



NOD1S4 ZSR textile inserts

REALM-3 Technology: Smart Stow

- Addresses challenges with dense populations of tagged items, especially those with metal content
- Signal from reader is routed to antennas inside textile ZSR inserts
- Reads are activated:
 - By schedule
 - On demand from ground control
- Typically exhibit >90% read accuracy



• Launch: September, 2021

Drawer Monitor System

- installation
- RFID tags on drawer monitor drawer state (open/closed)
- Tags provide state history to RFID readers on-demand
- State information is used in inference to determine item locations
 - Example: screwdriver "disappears" from antenna field-of-view, coinciding with door state change

REALM-2: RFID Recon

REALM-2, "RFID Reconnaissance"

- REALM-2 is a collaborative effort based on an RFID system as a payload on the NASA Ames Research Center's Astrobee
- REALM-2 Commissioning Date: October 2020

- Objectives:
 - Determine role of a robotic free-flyer in the REALM system
 - Extend coverage area, possibly reducing amount of fixed reader infrastructure required
 - Improve localization using REALM-1 system as a coarse solution

REALM-2 Location Refinement Missions

Homing Mission: Feedback from tag guides Astrobee to location

- Significant progress in the past year with machine learning applied to fixed-antenna RFID localization of assets
- Looking at refining ML approaches to match computational assets available on remote space habitat
- Audit accuracy is expected to increase significantly with smart stow
- Drawer monitor tag system is expected to expand logistics awareness without requiring smart stow infrastructure everywhere
- REALM-2 RFID Recon missions will provide another opportunity to expand coverage and improve key performance parameters such as localization and inventory audit accuracy

Don't forget to complete the session survey in the mobile app

We need your input

Thank you for Attending

A Virtual Conference presented by AIM & RAIN 9 - 10 December 2020

Presentations will be available on-line soon. You will receive an email with a link when they are available.